NUMERICAL METHOD FOR DETERMINATION OF
GENERALIZED ANGULAR COEFFICIENTS

V. I. Antonov UDC 536,244

A method is proposed for numerical determination of generalized angular coefficients for arbi-
trary surfaces. Examples of calculations are presented.

In solving radiant heat exchange problems with a radiating and an absorbing gas layer by the zonal
method, determination of the geometrical optical characteristics of the thermal radiation is of great import-
ance. The presence of a quite simple method for determination of generalized angular coefficients permits a
significant reduction in volume of the task of filling the matrix coefficients for unknowns in the zonal equation
system [1], The existing methods, using the function Ki(x) permit finding generalized angular coefficients for
a limited number of surfaces [2, 31; use of the Monte Carlo method requires a large number of tests, and thus,
a large amount of computer time {4, 5].

In the present study, to calculate generalized angular coefficients from the area 1 to the area 2 we use
the expression [1]
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Finding cos a4, COS w4y dA,, dA, with Egs. (5), (6) and substituting the expressions found in Eq. (1), we
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TFig. 1. Determination of generalized angular coordinates.

In the case of heat exchange between cylindrical areas with parallel directrices z; = f1(y), 2z, = {2(y9),
the integrand function F takes on the form

1 df, df,
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The fourfold integrals thus obtained are calculated approximately by Simpson's method, with automatic
step selection [6]. In the case where the projections of the surfaces A and A, on the plane xy A} and A} are
not rectangles, integrals with variable upper limits are obtained. These can be reduced to integrals with con-
stant limits, if for the integration area we take a rectangle including within itself A} and A}, and take the in-
tegrand function in the following form:
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To calculate generalized angular coefficients from an elementary area, which is part of a cylindrical
surface, onto an infinite cylindrical surface with parallel directrix, it is convenient to use the expression [2]
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The angles 8, ¢ and the ray length p are shown in Fig. 1. To determine the ray length we use the ex-
pression

p = X(p)cos ¥, (12)

where X () is the distance from the elementary area to the cylindrical surface in the plane perpendicular to
the surface (see Fig. 1).

To find X (f) it is necessary to write the equation for the cylindrical surface in a coordinate system
fixed to the elementary area (ordinate directed along normal to this area):

fx y)=0. (13)

Adding the equation of a ray departing from the origin of the coordinate system, we obtain a system of
two equations, permitting determination of X (8):

fx, ) =0, y=kx, (14)
where k=tanvy =cot § is the angular coefficient of the straight line (see Fig. 1).
The ray length can then be found from
X =Ve+g, (15)

where xg, y, are the solutions of Eq. (14) smallest in absolute value, which can be obtained analytically or by
numerical methods.

As an example of calculation of ZpdArAz we will consider two cases: radiation of an elementary area onto
a plane surface and onto the internal and external surfaces of a right circular cylinder, as is most often met
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TABLE 1. Comparison of Data of Various

Authors
b ¥
e [ l {81 present study
0,5 0,542 - 0,583 0,523
1,0 0,438 0,42 0,415
1,5 0,368 0,35 0,350
2,0 0,332 0,32 .. 0,314
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Fig. 2. Correction coefficient KT versus temperature,
T, °C.

Fig. 3. Correction coefficient Kyp,0 versus volume
fraction of H,0O vapor (all quantities are dimensionless);
1) Pg/P, = 0.2; 2) 0.4; 3) 0.6; 4) 0.8; 5 1.0.

with in solving problems of heating of complex charges in heaters and furnaces, The distance X (8) has an ex-
act analytic expression in each of these cases.

1. Radiation of elementary area onto plane surface. The formula for determination of X (3) has the form

h
X(P) = ,
(9] s (16)
when the surface and area are parallel, and
h
X(P)=— , (17)
sin B

when the surface and area are perpendicular.

2, Radiation of elementary area onto internal and external surface of cylinder, To determine the distance
X (B) the equations of a circle and straight line are solved simultaneously:

(EF—x )+ (W —y,P=R% y=kx (18)

The coordinates of the center of the second circle xg and yp are determined in a coordinate system
fixed to the elementary area, with ordinate directed along the normal to this area.

The quantity X(B), in the case of radiation onto the external cylinder surface, is defined as:
X(ﬁ) = 'XImm sz +1, 67&0’
XP =ly,—Vi—x3+Rql, p=0,

where | X |pmin is the absolute value of the smaller of the two solutions of Eq. (18).

(19)

In the case of radiation onto the internal cylinder surface,
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Fig. 4. Nomogram for finding generalized angular
coefficients (B, rad; ¥, dimensionless).
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To determine generalized angular coefficients a FORTRAN program using Egs. (7), (8), (11), (12) was
written. To verify the technique the results of the calculations for radiation of an elementary area onto a plane
surface (using Eq. (16)) were compared with data presented in [7, 8].

Table 1 presents the calculation results for various distances between the surfaces. A comparison of the
data will indicate the satisfactory accuracy of the calculations for engineering problems,

Calculations of generalized angular coordinates were performed for the radiation of several geometric
forms for a gas medium consisting of mixed CO, and H,0, without consideration of radiation selectivity. The
calculations were carried out to an accuracy of & = 0,005, in connection with which the step in numerical inte-
gration was chosen automatically. In all cases considered, 16 nodes in each variable were sufficient to achieve
the desired accuracy. Time for calculation of one coefficient with an ES 1020 computer did not exceed 1.5-2
min,

Calculations were performed for T = 800°C, r%{ o = 0-2; Px/P, took on values of 0.2, 0.4, 0.6, 0.8, 1.0.
In order to determine values of P —A, for parameters differing from the basic ones, the dependence of ¥ A A,
on temperature and on volume concentra’aon of H,0 was found for various Py /P,. Results of the calculations
are presented in Figs. 2, 3 in the form

Va,— (Tg) Va,a, M0
Ay—A, ), K, — A v HO .
K= Va4, (TO) A HO Yy, (M0 (0l

To determine the quantity P A, at parameter values differing from the basic ones, it is necessary to
have the value of ¥ A=A, obtained for Tr, rH o multiplied by the corresponding correction coefficients.

As an example of application of the proposed method, a calculation of generalized angular coordinates
was made, where A, is an infinite cylindrical surface and A, is a portion of a right circular cylinder, the
directrix of which is parallel to the directrix of A, and is one unit long, and for a rectangle, which is parallel
to the directrix of A,, with one side one unit long. The surfaces are specified by the equations (see Fig. 1)

2 =V 1=t where2s =0, z,=B—11—y2, B>2. (21)

Finding 8z,/9y, and 8z,/3y,, we obtain the following expression for generalized angular coordinates in
the first case:



TABLE 2, Dependence of Generalized Angular Coordi~
nates on Dimensions and Relative Position of Surfaces

B, m
a,m 2,‘5 I 3,0 | 3,5
| cylinder ' plane l cylinder ] plane , | cylinder‘ plane
0 0,432 0,432 0,246 0,246 0,174 0,174
0,1 0,413 0,415 0,229 0,230 0,160 0,160
0,3 0,384 0,410 0,218 0,227 | 0,154 0,159
0,5 0,330 0,392 0,196 0,223 ] 0,143 0,158
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In a similar manner we obtain the value of ¥4, -A, When Ay isa rectangle,

Calculation results for various values of a and B are presented in Table 2, Calculations at a = 0 were
performed with Eq. (11). A comparison of the results with « = 0 and not equal to 0 shows how much the gen-
eralized angular coordinates differ in the cases where A is an elementary area and in the case of a real form
A,. As follows from the table, this divergence increases with increase in the size of area Aj.

Results of calculating the dependence of generalized angular coefficients from an elementary area dA,
onto a plane surface on angle 8 are shown in Fig. 4.

To determine ‘pdA -A, it is necessary to find the angles 84 and j8,, starting from the relative position of
the surfaces, after wh1ch the nomograms are used to find two values of ¥(5) and #(8,). If the angles are on
the same side of the normal, then $ = | ¥ (8,) — ¥(B,) |, while if they are on different sides, then ¥ =9 (8) +
Y(B,y).

In conclusion, it should be noted that the algorithms and programs developed permit a significant reduc-
tion in the volume of labor in finding generalized angular coefficients. To perform the calculations only the
most general data on geometric position of the surfaces, temperature, and composition of the radiating gas
need be specified to the computer,

NOTATION

YA -Ap generalized ang.ular coefficient from area A; to area Ay A, area of elemental area, m?% ; Kgy ab~
sorpnon coefficient of gas, m % p, ray length, m; o, angle between direction of ray and normal to surface, rad;
& 3.141; h, distance from elementary area to plane surface, m; R, radius of cylinder forming surface, m;

rH 0» volume fraction of water vapor in gaseous medium (at atmospheric pressure equal to PH,0O 0/Py); Py =
PCO + PH,0» total partial pressure of CO, and HyO, N/m? P, =98.1- 10° N/m? Tg, gas temperature, °K; Kt
d1men31on1ess correction coefficient; T, temperature, °C,
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MODELING OF IRREVERSIBLE PROCESSES BY
ANALOGY METHODS OF STATISTICAL MECHANICS

G. P. Yasnikov UDC 536-12

Analogies to statistical mechanics of a Gibbs ensemble are constructed on the basis of the re~
flection method for dissipative macroscopic processes,

The formalism of classical and irreversible thermodynamics can be used successfully to construct math-
ematical models of a broad class of different processes, particularly control processes [1]. This is primarily
due to the existence of a profound analogy between the equations of a whole range of dynamic systems and
thermodynamics. The analogy between nonequilibrium thermodynamics and analytical mechanics was analyzed
in detail in [2, 3], where it was shown that thermodynamic relations can be represented in the form of La-
grange or Hamilton equations, The basis for this formalism is an artificial method of introducing the so-called
"mirror reflected system'" with negative dissipation and decreasing entropy [4].

The Lagrangian of the total system, including the original and reflected parts, can be represented in the
form

& =K (i, x;)—.-QI—R(xze, )+ —;—R*()‘cf, ) — T (%, x). (1)

Here the functions IZ, P{f, R, R* are constructed on the basis of specific expressions for the kinetic and poten-
tial energies and the dissipation function,

By means of [1] one can introduce the generalized momenta

9% 9K 1 R . 0% 0K , 1 0R* (2)
= ox; O, 2 ax,-’pf' oxf ax:‘+2 ax}
and the Hamiltonian
H6 = px; + pi 5 — L. (3)

Here and below doubly repeated subscripts imply summation. For an appropriate choice of the functions R and
R*,  is an integral of motion,

For a system of material points, moving in a medium with a linear resistance law, the functions (1)~(3)
are [4]

- 1 . 1 - 4
&= Quxr, — 3 fihx?‘xk‘l-? FipXeXf — bipXFxy, 4
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